Molecular and isotopic analysis of anaerobic methane- oxidizing communities in marine sediments

نویسندگان

  • Kai-Uwe Hinrichs
  • Roger E. Summons
  • Victoria Orphan
  • Sean P. Sylva
  • John M. Hayes
چکیده

Convergent lines of molecular, carbon-isotopic, and phylogenetic evidence have previously indicated (Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F., 1999. Methane-consuming archaebacteria in marine sediments. Nature 398, 802±805.) that archaea are involved in the anaerobic oxidation of methane in sediments from the Eel River Basin, o€shore northern California. Now, further studies of those same sediments and of sediments from a methane seep in the Santa Barbara Basin have con®rmed and extended those results. Mass spectrometric and chromatographic analyses of an authentic standard of sn-2-hydroxyarchaeol (hydroxylated at C-3 in the sn-2 phytanyl moiety) have con®rmed our previous, tentative identi®cation of this compound but shown that the previously examined product was the mono-TMS, rather than di-TMS, derivative. Further analyses of C-depleted lipids, appreciably more abundant in samples from the Santa Barbara Basin, have shown that the archaeal lipids are accompanied by two sets of products that are only slightly less depleted in C. These are additional glycerol ethers and fatty acids. The alkyl substituents in the ethers (mostly monoethers, with some diethers) are non-isoprenoidal. The carbon-number distributions and isotopic compositions of the alkyl substituents and of the fatty acids are similar, suggesting strongly that they are produced by the same organisms. Their structures, n-alkyl and methyl-branched n-alkyl, require a bacterial rather than archaeal source. The non-isoprenoidal glycerol ethers are novel constituents in marine sediments but have been previously reported in thermophilic, sulfateand nitrate-reducing organisms which lie near the base of the rRNA-based phylogenetic tree. Based on previous observations that the anaerobic oxidation of methane involves a net transfer of electrons from methane to sulfate, it appears likely that the non-archaeal, C-depleted lipids are products of one or more previously unknown sulfate-reducing bacteria which grow syntrophically with the methane-utilizing archaea. Their products account for 50% of the fatty acids in the sample from the Santa Barbara Basin. At all methane-seep sites examined, the preservation of aquatic products is apparently enhanced because the methane-oxidizing consortium utilizes much of the sulfate that would otherwise be available for remineralization of materials from the water column. Crown Copyright # 2000 Published by Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation.

Genomic markers for anaerobic microbial processes in marine sediments-sulfate reduction, methanogenesis, and anaerobic methane oxidation-reveal the structure of sulfate-reducing, methanogenic, and methane-oxidizing microbial communities (including uncultured members); they allow inferences about the evolution of these ancient microbial pathways; and they open genomic windows into extreme microb...

متن کامل

Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities.

Microbial communities in hydrothermally active sediments of the Guaymas Basin (Gulf of California, Mexico) were studied by using 16S rRNA sequencing and carbon isotopic analysis of archaeal and bacterial lipids. The Guaymas sediments harbored uncultured euryarchaeota of two distinct phylogenetic lineages within the anaerobic methane oxidation 1 (ANME-1) group, ANME-1a and ANME-1b, and of the AN...

متن کامل

Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.

The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages...

متن کامل

Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the beta subdivision of the Proteobacteria.

The diversity of ammonia-oxidizing bacteria in aquatic sediments was studied by retrieving ammonia monooxygenase and methane monooxygenase gene sequences. Methanotrophs dominated freshwater sediments, while beta-proteobacterial ammonia oxidizers dominated marine sediments. These results suggest that gamma-proteobacteria such as Nitrosococcus oceani are minor members of marine sediment ammonia-o...

متن کامل

Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor.

Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000